FOMC Minutes:
As a Source of Monetary Policy Surprise

Fatih Kansoy*
University of Nottingham

July 2, 2019

Abstract

This paper examines whether and to what extent publications of the Federal Open Mar-
ket Committee (FOMC) minutes contain significant information for the expectation of future
monetary policy in the US. We construct measure of new surprise series with intradaily data
for the Fed futures contracts and the responses of stock markets, fixed income markets and
exchange rates to these surprises during 2004–2017. We find that the release of FOMC minutes
affects the market volatility and financial asset prices respond significantly to FOMC minutes
announcements. Finally, volatility and the volume of reactions increase during the zero lower
bound. Specifically, this research finds that the release of FOMC minutes induces “higher than
normal” volatility and shows that financial markets respond quickly and significantly to the
release of FOMC minutes.

Keywords: Central Bank Communication, FOMC Minutes, Monetary Policy Shocks
JEL Codes: C1,D83, E5.

*The University of Nottingham, School of Economics, Email: fatih.kansoy@nottingham.ac.uk
1 Introduction

On May 18, 2016, the Fed released the minutes of FOMC meeting that was held on April 27, 2016. This release led to a massive reaction in the financial markets. U.S. Stocks fell, Treasury yields rose and the US Dollar soared (i.e. a nine-week high against the Swiss Franc and a three-week high against the Yen). Financial agents attributed this outsize response to the release of FOMC minutes. The financial world had interpreted this release as suggesting that the Fed would raise interest rate sooner than previously expected. For example;

The New York Times: The Federal Reserve sent a sharp, simple message to financial markets on Wednesday: Pay attention. The Fed is thinking seriously about raising its benchmark interest rate at its next meeting, in June...

The Guardian: US Fed says June hike possible...

CNBC: Fed likely to hike in June if data improve...

Reuters: Fed signals interest rate hike firmly on the table for June...

Although market participants were already aware of the key decision of April 18, 2016 FOMC meeting, the reaction to the release of minutes for this meeting was striking, particularly considering that all discussions were made three weeks prior and no policy change was affected on that day. However, contrary to expectations, the Fed decided not to raise interest rates on June 17, 2016 and reaffirmed the current target rate. With the statement and minutes of this June 17, 2016 meeting, the market changed the expectation and positions based on the low probability of any action on interest rates for until December 2016 meeting. What is understood from these announcements and markets' reactions is that FOMC minutes may contain new information albeit lagged, on the future expectation of monetary policy and this information has the ability to change market reactions. Therefore, this research evaluates whether this reaction of asset markets on May 18, 2016 to the minutes of April 27, 2016 was a typical response to Federal Reserve policy, in other words, whether FOMC minutes matter for the market or not.

The Fed provides investors and ordinary consumers with a large number of communications and guides which contain information and signals on the future monetary policy stance such as FOMC meeting statements, minutes, governor and other Fed officials' speeches, press conferences, and transcripts\(^1\). The Fed announces the main decision of FOMC meeting with a post-meeting

\(^1\)For more information about the central bank communication and their importance see; Blinder et al. (2008), Rosa (2016), Hansen et al. (2017), and Hansen and McMahon (2016)
statement including a short rationale for the policy action. FOMC statements announce if there is any change in policy rate, and outline the rationale behind the policy stance and outlook for the future monetary policy stance. FOMC statements are published shortly after the meeting and mostly consist of 1-3 pages of information. However, FOMC minutes are announced three weeks after the actual FOMC statement and three weeks prior to the next FOMC statement (see Figure-1). Furthermore, FOMC minutes provide a detailed summary of FOMC discussions and give information the public and other governmental organs on a comprehensive views of committee members and discussions on the macroeconomic fundamentals as well as monetary policy aspects, including the diversity of views. Minutes of FOMC meetings provide financial participants with an update of views of committee members (both voting and non-voting) of the economic outlook and the assessments of committee members on policy options, relied on data and information that was available at that time (Jung, 2016).

According to Apergis (2015), minutes of FOMC meetings are supposed to reflect changes in the policymakers’ views not only about the short-run reaction of financial asset prices but also on the view of future of economy and risks associated with the long-run path of monetary policy. This may affect investors and consumers’ own predictions for the economic outlook. Therefore, the investigation on FOMC minutes is expected to provide crucial insights for central bankers on how well monetary decisions are predicted by financial agents and the impact these have on their views about future monetary policy, or other fundamentals such as the growth rate and inflation.

This information allows policy makers to evaluate whether and to what extend financial agents respond in accordance with the policy makers’ intentions. Information about the likely market reaction to monetary policy, therefore, enables the Fed to assess the immediate success of any action that has been taken. This is important as expectations play a crucial role in the determination of investment and consumption preferences so and, thus, for real economic output in the future. Hence, the measurement of monetary policy surprises and their effects on markets has become an important task for policy makers and economists. This research primarily deals with questions such as how such unexpected occurrences in monetary policy and their sources are determined and how these events affect financial markets.

There is a plethora of evidence to suggest that Fed monetary policies have always been important for domestic as well as international financial markets2. How domestic and international financial assets respond to Fed monetary policy is of crucial interest not only for academics but also important

2 For the domestic markets Bernanke and Kuttner (2005) and for international markets Ehrmann et al. (2011) and Hausman and Wongswan (2011)
for monetary policy makers. The Fed itself, for instance, estimates how well its actions are predicted by financial agents, given that market participants can adjust their views on future monetary actions and other expectations such as expectations of inflation, unemployment rate, and output growth based on these actions. All these expectations will have an important impact on the overall economy.

A recent strand of literature has analysed the asset price response to the release of FOMC statements. Some important studies include Kuttner (2001) for Treasury rates, Bernanke and Kuttner (2005) for stock exchanges, and Glick and Leduc (2015) for exchange rates. Gürkaynak et al. (2005) and Hausman and Wongswan (2011) documented that post-meeting statements have statistically significant and economically relevant effects on U.S. asset prices. Despite a large and growing body of literature has investigated to the financial market effect of FOMC announcement days, what is not yet clear is the impact of FOMC minutes announcements on financial markets. In contrary, this research considers that FOMC minutes are one of the essential complements to the post-meeting statement and should be taken into account to understand the full picture of the effect of Fed monetary policy.

A notable exception is Rosa (2013) that examines the volatility of markets after the release of FOMC minutes for the 2005-2011 period with intra-daily data. This analysis focused solely on the asset price volatility at a five-minute intervals of on the run stock prices, ten- and three-years Treasury yields, and exchange rates. It was found that FOMC minutes increase asset price volatility at the time of each release. Further, it argues that the asset price volatility has declined since 2008 due to increasing Fed monetary policy transparency. These findings support that the release of FOMC minutes effectively change the behaviour of US asset prices. However, Rosa (2013) did not consider the responses of asset prices to FOMC minutes for example, whether or not this volatility causes a significant asset price response to the Fed announcement. Furthermore, in this investigating, there is no evidence to explain how the zero lower bound policy affects this volatility and asset price reaction. However, the updated and comprehensive dataset in our study allows for an investigation into the zero lower bound period and further, comparison with other periods.

Similarly, Jubinski and Tomljanovich (2013) analysed the volatility of equity (of 2832 individual firms) prices to FOMC minutes for a short period (2006-2007) using GARCH model with intraday data. It was found that the release of FOMC minutes affects the volatility of individual firms' equity prices, in that conditional volatility is lower prior to FOMC minutes release and higher after the minutes release on release days, relative to a “control” day one week prior to the release date. It further showed that equity returns are essentially unaffected by FOMC minutes releases despite the increase in volatility. Jubinski and Tomljanovich (2013) results raise an important question, a
response to which cannot be found in Rosa (2013)'s paper. The question is whether the release of FOMC minutes affects the returns of financial market asset prices (not just individual firms) and how these have changed since the recent financial crises and zero lower bound.

Therefore, our study provides an essential complement to the findings in literature on the effects of central bank communication. This research aims first to extend Rosa (2013)'s research in certain respects and time period. Moreover, it investigates the effects of FOMC minutes on a wide range of asset classes as well as their volatility for the period 2004-2017 with a particular emphasis on the zero lower bound monetary policy times. This research mainly contributes to the extant literature in the a number of ways. First, it analyses the effects of FOMC minutes releases, as opposed to FOMC statements, with an updated and high-frequency dataset. Second, this allows evaluation of the extent to which FOMC minutes contain new and market-relevant information, how markets react to this new information and lastly how these reactions change over time.

A summary of the main findings of this research is outlined below. First, an investigation into the financial market volatility caused by the release of FOMC minutes on the asset prices (exchange rates, stock prices, and Treasury yields) was undertaken. The release of FOMC minutes is indicated to induce higher than normal volatility across different asset classes. For example, the volatility of the EURO/USD exchange rate and 10-year Treasury yields is approximately three times larger on event days than non-announcement days. These findings suggest that FOMC minutes contain market-relevant information and this is not a completely ex-ante information. The findings of this section are consistent with the results of Rosa (2013) which also showed the volatility is higher than normal on announcement days. Second, in contrast to Jubinski and Tomljanovich (2013) (and in addition to Rosa (2013)) it was found that financial markets respond quickly and significantly to the release of FOMC minutes, and these reactions are heterogeneous across the financial markets. For example, only the stock market responds negatively and significantly to the target surprise while exchange rate and ten-year interest rate respond positively and significantly to the path surprise, and further, that three-month interest does not respond significantly. Therefore, it concludes that the release of FOMC minutes receives the attention of the market and this attention is mostly significant. This suggests that FOMC minutes should be considered an important announcement as similar to the actual FOMC interest-rate decisions. Finally, further investigation has been conducted by splitting the dataset into two parts in order to examine whether the asset price response and volatility to the release of FOMC minutes change before and during the zero lower bound period. It was found that the volatility increased and responses to FOMC minute became stronger. The potential interpretation of these findings is that since there was no policy change expectation, the
markets do in fact react to the release of FOMC minutes as a source of information on the future path of the monetary policy stance.

The remainder of this paper proceeds as follows. Section-2 begins by introducing the Fed communications and FOMC minutes. Thereafter, Section-4 and -3 describe future contracts as an expectation tool and methodology, respectively. Then, Section-5 constructs monetary policy surprise index and Section-6 gives data information and Section-7 offers discussions of the empirical results and compares these with the previous chapter and finally, conclusions are drawn.

2 The Fed Communication and FOMC Minutes

With the recent financial crisis, in many advanced countries, short-term interest rates reached the zero-lower bound (ZLB) and the communication about the future policy has become an essential part of central banking. The ZLB is generally considered an important limitation on the ability of central banks to conduct conventional monetary policy. However, Swanson and Williams (2014) claimed that changing the current level (ZLB) of the policy rate is not the only way of making effective monetary policy. They reported that during the ZLB period unconventional monetary policies and communication methods such as forward guidance shaped the market’s expectation about future interest rate policy and mitigated the limitations imposed by the ZLB. In fact, Woodford (2005) emphasised the importance of management of expectations in order to increase the effectiveness of the policy. In parallel with this, Bernanke (2004) underlined that transparency in central bank communication enhances the effectiveness of monetary policy. In the case of the U.S, over the last decade, central bank communication has gained the essential position in Fed monetary policy.

According to Woodford (2005) the Fed’s communication strategy has evolved substantially over time. Over the recent decades, the Fed has undertaken sustained efforts to enhance the financial participants’ understanding of its monetary policy. Further, the Fed has successfully transformed itself from a secretive to a highly transparent authority, with the intention of creating more effective monetary policy. According to Blinder et al. (2008) and Hansen et al. (2017) the Fed is a highly predictable central bank and is presumed to be the top-ranked among the most transparent central banks in the world.

January 2002 saw the Fed amend its disclosure policy and clarify that FOMC would issue a statement immediately after each regular meeting. Until January 2002, no real-time policy decisions were revealed by the Fed after each meeting, rather only after the upcoming meeting. Markets were left guessing what the intended federal funds rate was after the first meeting. Therefore, it can be
said that this is a lagged-learning procedure. As regards FOMC minutes, which have been published since 1936, the publication lag thereof was approximately 6-8 weeks after the corresponding meeting. Hence, simply it can be said that until January 2002, the statement did not announce any policy decision immediately after the meeting but was published without voting records. Minutes have the voting records and discussions but this information set could only be obtained 6-8 weeks after the current meeting (see Panel 1 in Figure -1).

After 2002, the FOMC amended its disclosure policy and set out to make the outcomes of its meeting known via a post-meeting statement including a short rationale for the policy action immediately after each regularly scheduled FOMC meeting, irrespective of any changes to monetary policy. Thus, from 2002 the minutes and votes of individual FOMC members have been included in the next FOMC meeting statement. However, the minutes of meetings were still published 6-8 week later. Once again, market agents could only incorporate information from such minutes for previous meeting but not for the forthcoming meeting. For example, the market could learn how FOMC members interpret the recent economic and financial data such as the unemployment report and compare with their interpretation only at that time but they cannot assess what members think currently and what are the possible actions for the next meeting (see the panel 1 in Figure -1).

In December 2004, the FOMC decided to publish the minutes of each meeting earlier, to be precise, both three weeks after the meeting as well as three weeks prior to the following meeting. Further, after this date, FOMC minutes were more a reflection of the views of both voting and non-voting members, where previously only voting members’ views were reflected in the minutes. This is now standard procedure with Fed monetary policy (see Panel 2 in Figure -1). According to Fawley et al. (2013) these steps have enhanced the market’s understanding of the fed funds rate setting and have substantially decreased market uncertainty. Hence, this appears to have helped markets to predict future monetary policy actions and to have increased monetary policy effectiveness (Swanson, 2006). For example, Jung (2016) showed that these changes allowed market participants to more precisely formulate expectations as to what the FOMC’s next policy decision might be.

In summary, figure-1 shows the recent timeline of Fed communication changes. The first panel illustrates that until December 2004, no policy decision was recorded after the meeting, and statements were published after the subsequent meeting without any voting records. Minutes contained voting records, but these minutes were published up to 6-8 weeks later. Furthermore, the voting record (only for voting members) was announced together with the statement on the day of FOMC meeting, however, FOMC minutes were published after the subsequent meeting. The last
panel (panel-2) shows the current federal fund communication strategy. Minutes are now published exactly 3 weeks after the meeting and 3 weeks before the next meeting at 14:00 ET. Thus, time and date of the release of FOMC minutes are now foreknown. This dataset covers the period from December 2004 till November 2017, which reflects the recent and updated Fed strategy of communications.

Figure 1. Evolution of FOMC Announcements

Until January 2002
- Statement without policy decision announcement and no voting records.
- Minutes of the previous meeting after 6-8 weeks with the voting record.

January 2002-December 2004
- Statement with policy decision announcement with the voting record.
- Minutes of the previous meeting after 6-8 weeks.

Since December 2004
- Statement with policy decision announcement with voting record + press conference since 2011.
- Minutes of the previous meeting is announced exactly 3 weeks later with the views of both voting and non-voting committee members.

3 Event Study Methodology

Economists have always been interested in the effects of a specific economic or non-economic event on asset prices (MacKinlay, 1997). A technique which is called the event study method can easily construct a measurement by using financial market data. Given rationality in the market place or
under the efficient market condition, the usefulness and effectiveness of such a method come from the
fact that the impact of a related event will be conveyed shortly in financial asset returns. Therefore,
a measure of the event’s financial effect can be constructed using these asset returns observed over
a relatively short time period which is called “the event window”. Through this research, the event
study method has been applied to see the immediate impacts of Fed monetary policy announcements
on the financial asset prices.

Even though the event study method has a long history which goes back to 1930s, for example
Dolley (1933) investigated the effects of stock splits on the nominal price changes at the time of the
split. By improving this method Fama et al. (1969) introduced the event study technique which
is almost the same as in use today. Amongst other Roley (1982), Fleming and Remolona (1999),
Rudebusch (1998), and Ellingsen and Soderstrom (2001) are the seminal papers of the event study
(MacKinlay, 1997). The method has fast become a key instrument in measuring the effects of
monetary policy announcements on asset prices and economic fundamentals recently. Simply, the
event study method offers a solution on measurement the effect of an event of interest over a pre-
defined period. For instance, if one is looking at the effects of a recent unemployment report on stock
prices with daily data, the event is here the release of unemployment report and the event window
is a one-day period. Therefore, the main task of conducting an event study is first to determine the
event of interest and define the period of interest. For instance, in the unemployment report case,
the stock index might obtain information about the reports before the actual release and it can be
examined this possibility by investigating pre-event returns. In our case, this research looks at the
asset prices just before the Fed monetary policy announcement and after the announcement then
investigates whether these differences are abnormal or not.

The event study method on the monetary policy analysis was popularised by Kuttner (2001).
In addition to Kuttner (2001), Bernanke and Kuttner (2005) also investigated the effects of the US
monetary policy news on financial asset by using the same method with daily data. Furthermore,
Ehrmann and Fratzscher (2003) have applied the same method for the European Central Bank
(ECB) to the European financial markets and have found that ECB communication has considerable
effects on European financial asset prices. In a similar vein, Andersson (2010) analysed the responses
of exchange rates to economic news and proved that there is an important relationship between the
two.

Apart from central bank announcements or news, the event study method has also been used
in a variety of different case. Boyd et al. (2005), for example, examined unemployment rate an-
nouncements and their effects on the equity prices in the US. It was found that if the unemployment
rate was unexpectedly high, this announcement led stock prices to increase during expansion times, though, not during recession times. Rigobon and Sack (2005) showed that a rise in the probability of the war against Afghanistan in 2003 caused stock prices to decrease and increases oil futures quotes. Similarly, by using an event study Snowberg et al. (2013) further demonstrated the relationship between stock market prices and changes in perception of which candidate will win on election day.

The efficient markets hypothesis assumes that market prices adjust quickly to any new information and prices should also reflect all information available. For example, in the minutes before the information or news related to asset prices is released, its content is unknown to financial market agents. After the news release, with efficient markets, the content of the news is quickly adjusted and conveyed by financial asset prices. In this regard French and Roll (1986) and Neely (2015) showed that asset prices react relatively rapidly to news. Thus, changes in price reflects markets' reactions to the new information received before or after any changes in financial market. This identification method is known as the event study technique and is used in this research.

According to recent finance literature, the event study is an appropriate method for determining the immediate effects of any surprise information on the market (Neely, 2015). The rationale for this method is that forward-looking financial markets should quickly incorporate all new information from a public announcement immediately after the announcement is made. Intuitively, financial participants would not be predicted to forgo large, risk-less, profitable trading opportunities for more than a couple of days or even hours, and thus the impact would be reflected in prices within a short period following monetary policy announcements that include new information (surprises) for financial markets. In this study, the event study technique measures the effects of monetary policy surprises by looking at the reaction of prices around a pre-defined window of the policy action. This is a simple yet powerful measurement of the changes. Event studies are supported by two main assumptions. First, event studies only measure price changes that occur within the pre-defined window and, secondly, they assume that price changes convey market responses to information regarding monetary policy obtained before or after the window.

4 Market Expectation Tool: Basic Concepts of Futures Contracts

There are many different financial market instruments to anticipate the future of monetary policy such as Treasury bills, fed funds futures, Euro-dollar futures, Euro-dollar deposits and federal funds loans, all of which differ in their liquidity and risk characteristics and thus, their ability to capture
monetary policy shocks. For example, Kuttner (2001) uses the current month federal contracts, Gürkaynak et al. (2005) and Hausman and Wongswan (2011) the current month fed fund futures and Euro-dollar futures contracts, Rigobon and Sack (2003) the three-month Euro-dollar futures rate, and Ellingsen and Söderström (2004) the three-month Treasury bill rate. In this respect, Gürkaynak et al. (2007) investigated different financial market tools for forecasting monetary policy at various horizons. It was found that the best measure of surprise for the immediate policy setting is fed funds futures rates which were used by Kuttner (2001), while for a more long-term perspective, which is the expected near-term policy path rather than the immediate policy setting, it was concluded that Euro-dollar future contracts seem a better tool. Therefore, in this research, owing to their forecasting ability, the fed fund futures contracts are used to proxy the target surprise as in Kuttner (2001) while 1-Year Euro-dollar futures are used for the path surprise, similar to Gürkaynak et al. (2005), Hausman and Wongswan (2011), and Glick and Leduc (2015).

Futures contracts are cash settled based upon the average daily effective target rate, as published by the New York Fed, during the course of the delivery month. These futures contracts provide an efficacious means of hedging and gaining exposure to interest rate risks. In simple terms, the fed funds futures are contracts with pay-outs at maturity, relied on the average effective federal funds rate during the expiration month. Futures contracts are a valuable market predictive tool since they reflect the common marketplace insight regarding the future stance of Fed policy. According to the CME, fed fund futures have a number of key benefits. They provide a gauge of market expectations about the Fed’s action at future FOMC meetings. In addition, they offer trading in transparent markets with low transaction costs, daily market-to-market and the virtual elimination of counter-party credit risk. Furthermore, futures contracts offer liquid tools to manage risk or hedge against changes in Fed monetary policy. Fed fund futures and Eurodollar futures have the same structure. In this research, one-month current contract Fed fund futures and one-year ahead Eurodollar futures contracts have been used. These contracts were introduced in the literature of monetary policy announcements by Kuttner (2001) and extended by Gürkaynak et al. (2005).

Technically, the fed funds futures contract is quoted per the “IMM Index” or the price of fed futures contracts is 100 minus the expected Fed funds effective rate. Every contract represents the average overnight federal funds rate for the contract month. The value of the contract (ff) at expiration is $100 - r$, where r is the average effective federal funds rate over the expiry month. If the particular contract for instance, March 11, 2003 is priced 98.77, then it is understood that the market predicts the implied average fed funds effective rate for March 11, 2003 as 1.23% (100-98.77).
Thus, it can be formulated:

$$E[r] = 100 - ff$$ \hspace{1cm} (1)$$

where $E[r]$ is the expected interest rate and ff is the futures contract price.

Therefore, the market anticipation of the interest rate from the fed fund futures contracts' price can be determined at any time. For example, if the current Fed funds target rate is 1% which means that $r = 1$ and the futures contract rate is $ff = 98.770$, then the expected interest rate is;

$$E[r] = 1.23\% = 100 - ff = 100 - 98.770$$ \hspace{1cm} (2)$$

$$E[\Delta(r)] = E[r] - r$$ \hspace{1cm} (3)$$

where $E[\Delta(r)]$ is the expected change in interest rate and r is the current interest rate.

Equation 3 implies that the market is expecting that the FOMC will increase the rate of 25 basis points ($E[\Delta(r)] = 1.23\% - 1 \approx 0.25\%$). This is due to the assumption that market participants have already priced their expectation prior to the announcements. However, if the contract price is 98.95, this suggests that the expected federal funds rates is 1.05\% (100-98.95), therefore 0.05 (1.05\%–1\%) basis points indicates that markets do not expect any shift in rates with the upcoming FOMC meeting at that time. Moreover, the monetary policy surprise based on futures contract price is;

$$Surprise = E[\Delta(r)] - \Delta(r)$$ \hspace{1cm} (4)$$

where $\Delta(r)$ is the actual interest rate change and the surprise is the difference between expected change and actual change in the interest rate.

5 Measurement of Monetary Policy Surprises

Two proxies have been used for U.S. monetary policy surprises as opposed to the single proxy used in Kuttner (2001). Gürkaynak et al. (2005) provided evidence that monetary policy surprises contain more than just a surprise in the announced target rate. Further, the study showed that two factors are needed to capture the full extent of monetary policy surprises, one for the current target rate (target surprise) or the short-term surprise and the second for the expected path of future monetary policy for the future monetary policy surprise. The target surprise is the degree to which market
participants have been able to anticipate the actual monetary policy decisions. The path surprise instead measures to what extent market participants have revised the future expected monetary policy path following the actual decision and/or monetary policy statements.

5.1 The Target Surprise

The target surprise can be defined as the difference between the announced target fed funds rate and anticipations derived from the futures contracts. The target surprise is computed from the change in the current-month fed funds futures contract rate in a precise time window around FOMC announcement. These futures enable market agents to place a bet in the month \(t \) on the average effective Fed target rate during the current or future month, represented as \(r_{t+m} \), and \(m \geq 0 \). For example, a market participant on day \(d \) in month \(t \) can get at a fixed rate at the end of the month \(t+m \) thus it can be symbolised by \(ff_{d,t}^{(m)} \). For instance, if \(m = 0 \) then the contract is for the current month \(t \), if \(m = 1 \) then it is for the next month, symbolised as \(t + 1 \), and so forth. Thus, \(ff_{d,t}^{m} \) contract rate represents the market expectation of the average effective federal fund rate, \(r_{t+m} \):

\[
ff_{d,t}^{m} = \mathbb{E}_{d,t}[r_{t+m}] + \eta_{d,t}^{m}
\]

(5)

where \(\eta_{d,t}^{m} \) is a risk premium and \(\mathbb{E}_{d,t}[r_{t+m}] \) is the market expectation of the target rate on the day \(d \) in month \(t+m \).

Therefore, if an FOMC meeting is scheduled to take place on day \(d_0 \) of a month \(t+0 \) with total \(D \) days, the rate of fed funds futures contract \(ff_{d-1,t} \) which is the one day before \((d-1) \) the announcement in the current month (\(m = 0 \)) would be:

\[
ff_{d-1,t} = \frac{d_0}{D_0} r_0 + \frac{D_0 - d_0}{D_0} \mathbb{E}_{d-1,t}(r_1) + \eta_{d-1,t}
\]

(6)

where \(ff_{d-1,t} \) is the closing-contract price on one-day before \((d-1) \) FOMC announcement day \((d_0) \) in month \(t \).

Equation-6 simply shows that \(ff_{d-1,t} \) is a weighted average of the fed funds rate \((r_0) \) that has prevailed so far \((d \) days \) in the month \(t \) and the rate \((r_1) \) is that which is expected to prevail for the remainder \((D-d \) days \) of the month plus a risk premium, \(\eta_{d-1,t} \). By evaluating the equations-6 one-day ahead which is at the end of day \(d_0 \), we can reach:

\[
ff_{d_0,t} = \frac{d_0}{D_0} r_0 + \frac{D_0 - d_0}{D_0} (r_1) + \eta_{d_0,t}
\]

(7)

13
where $ff_{d_0,t}$ is the contract price at the end of FOMC announcement day in month t. Note that in both equations 6 and 7, m is zero and so $ff_{d_0,t}$ equals $ff_{d_0,t}^0$ but for simplicity, this is not denoted.

Equation 6 shows the rate of the contract just one day before FOMC meeting and the second equation 7 shows the new contract rate after FOMC meeting. These equations can be used to identify monetary policy shocks. As the futures contract rate will incorporate all information available to the markets, thus, any change in the futures rate over a small time window around FOMC statements will reflect changes in market predictions. Therefore, to see FOMC meeting surprise which is the unanticipated component of the monetary policy action is given by differencing the equation 6 from 7, known as the Target Surprise (TS) is:

$$TS_{d_0,t} = E_{d_0-1,t}[r_1] - [r_1]$$

$$TS_{d_0,t} = \left[(\Delta ff_{d_0,t}) - (\Delta \eta_{d_0,t}) \right] \frac{D_0}{D_0 - d_0}$$

where $\Delta ff_{d_0,t} = ff_{d_0,t} - ff_{d_0-1,t}$ and $\Delta \eta_{d_0,t} = \eta_{d_0,t} - \eta_{d_0-1,t}$. Similar to Gürkaynak (2005), it is assumed that the risk-premium is constant thus, $\Delta \eta_{d_0,t} = 0$ in such a short time window where 20 minutes in our case. Hence, a policy surprise after FOMC announcement can be computed in the future contract rate at the end of FOMC meeting day from the one day before. It can be seen that the target surprise, $E_{d_0-1,t}[r_1] - [r_1]$, is:

$$TS_{d_0,t} = \frac{D_0}{D_0 - d_0}(\Delta ff_{d_0,t})$$

In a simple terms, the target surprise daily is defined as $TS_d = \frac{D_d}{D_d - d}(ff_d - ff_{d-1})$ where d is the announcement day and $d - 1$ is the one day before the announcement, ff is the 30-days Fed fund futures. Similarly, target surprise intra-daily is defined as $TS_d = \frac{D_d}{D_d - d}(ff_{\tau + 10} - ff_{\tau - 10})$ where τ is the time of the announcement in day d. Hence $\tau + 10$ means 10 minutes after the announcement and $\tau - 10$ is 10 minutes before the announcement.

5.2 The Path Surprise

Although the target surprise (TS) may provide the best measure of unanticipated shifts to the immediate policy setting, this research is interested in expectation changes about the future policy at the next FOMC meeting. For instance, financial agents might shortly expect a potential federal

\footnote{More detailed discussions on risk-premium see Piazzesi and Swanson (2008)}
funds rate cut, however, they cannot be sure whether this will occur with the next meeting or the meeting thereafter. To analyse shocks related to the current and future rate policy, the market expectation of average rates within specific intervals should be gauged: between the current and the next FOMC meeting, between the next meeting and the meeting thereafter, and so on so forth. These are only expectations, thus the surprises cannot be measured with the 1-month fed fund futures and so TS, in this regard, as in Hausman and Wongswan (2011) used a second surprise component, which is the path surprise, to capture the full extent of monetary policy.

Essentially, the target surprise is aimed at gauging the effects of current policy decision while the path surprise is intended to reflect news about any revision in monetary policy in the future. For this reason, in order to capture the long-time surprise, the path surprise is also used as a second surprise component. The similar method of target surprise is followed to gauge changes in expectations about r_2, the federal fund target rate that will prevail after the second FOMC meeting from now. If ff denotes the futures contract rate for the month containing the second FOMC announcement, then

$$ff_{d_0,t} = \frac{d_1}{D_1} E_{d_0-1,t}[r_1] + \frac{D_1 - d_1}{D_1} E_{d_0-1,t}[r_2] + \eta_{d_0-1,t}$$

(11)

where d_1 and D_1 are the day of that the second FOMC announcement and the number of days in the month containing this second FOMC meeting. Similarly, $\eta_{d_0-1,t}$ reflects the risk premium at the same as before. r_1 the interest rate after the first FOMC meeting and r_2 is the interest rate after the second FOMC meeting. Therefore, the first part of the equation-11 is the expectation of the interest rate for the first FOMC ($E_{d_0-1,t}[r_1]$) on day $d_0 - 1$ and the second part of the equation-11 is the expectation of the interest rate for the second FOMC ($E_{d_0-1,t}[r_2]$) again on day $d_0 - 1$. By evaluating the above equations ahead one day:

$$ff_{d_0,t} = \frac{d_1}{D_1} [r_1] + \frac{D_1 - d_1}{D_1} E_{d_0,t}[r_2] + \eta_{d_0,t}$$

(12)

Thus, equation-12 indicates that r_2 needs to be predicted again with the new information available after the first FOMC meeting. $E_{d_0,t}[r_2]$ denotes the expectation of r_2 on day d_0 where r_1 is already known after the first FOMC meeting. Differentiating the equation-11 from the 12 then the path surprise is:

$$PS_{d_0,t} = E_{d_0,t}[r_2] - E_{d_0-1,t}[r_2]$$

(13)
in detailed form:

\[PS_{d0,t} = \left[(\Delta ff_{d0,t}) - \frac{d_1}{D_1} TS_{d0,t} \right] \frac{D_1}{D_1 - d_1} \]

(14)

where \(\Delta ff_{d0,t} = ff_{d0,t} - ff_{d0-1,t} \) and again the risk-premium \((\Delta \eta_{d0,t} = 0) \) is constant. For the intraday path surprise:

\[PS_{d0,t} = [(\Delta ff_{d0,\tau,t}) - \frac{d_1}{D_1} TS_{d0,\tau,t}] \frac{D_1}{D_1 - d_1} \]

(15)

where \(\Delta ff_{d0,\tau,t} = ff_{d0,\tau+10,t} - ff_{d0,\tau-10,t} \)

6 Data Information for FOMC Minutes

High-frequency US asset prices data was used which consists of quotes measured at ten-minute intervals of on-the-run CME futures contract for the shock series, S&P 500 for the stock market, EURO/USD for the exchange rate, and three-month and ten-year Treasury yields for the interest rates. The dataset covers all announcement and non-announcement days for the period December 2004 to November 2017. The exchange rate, EUR/USD rate, is defined as the Euro price of one U.S. Dollar such that a positive (negative) change implies an appreciation(depreciation) of the U.S. dollar.

As aforementioned, after the decision on December 2004, the Fed started to publish FOMC minutes on exact date and time of the meeting. However, previously FOMC minutes were released only after the next meeting finished and it takes generally 6-8 weeks (see upper section of the Figure-1). Hence, after December 2004 minutes have been published 3 weeks after and 3 weeks before the statement, exactly. This facilities with certainty the systemic measurement of market reaction. Thus, the full sample herein comprises a total of 101 FOMC minutes announcements and 56 FOMC minutes announcements for the ZLB period. Prices at the end of each ten-minute interval are used to construct the series of ten-minute continuously financial asset price returns.

Table-1 presents the summary statistics for variables used in this research from December 2004 to November 2017 for different sub-samples. Policy Change was not added, since there is no policy change coming with FOMC minutes announcements. According to Table-1 the sample period of the whole dataset (Panel A) is December 2004–November 2017 and covers all ten-minute intervals in a day. Panel B, C, and D show the summary statistics of non-announcement days, FOMC minutes announcement days, and FOMC statement announcement days, respectively. Panel B, C,
and D cover only the ten-minute interval during the period 13:00 - 16:00 to compare announcement effects. This period covers both FOMC announcements since minutes are released at 14:00 and statements are released at 14:15 and allow for comparison of volatility change one hour before and two hours after the announcements. The asset price return is the ten-minute percentage change for the Euro–U.S. dollar exchange rate and S&P500 index. Similarly, the ten-minute change in Treasury yields is measured in basis point change.

The sample period of the whole dataset (Panel A) is December 2004–November 2017 and covers all ten-minute intervals in a day. To gauge the importance of FOMC minutes release, a comparison was made of the increase in the variance of other U.S. asset prices attributed to FOMC minutes with the response caused by the release of FOMC statement and non-announcement days. Panel B, C, and D show the summary statistics of non-announcement days, FOMC minutes announcement days, and FOMC statement announcement days, respectively. These three panels cover only the ten-minute interval during the period between at 13:00 - 16:00 to easily and precisely compare different announcement effects in a day. This (13:00-16:00) period covers both announcements from when FOMC minutes are released at 14:00 and FOMC statements are released at 14:15 and allows for comparison of extent of volatility change one hour before and two hours after the announcements.

For the target and path surprises, only one observation for each day was used. For that reason, the number of observations for these surprise components is less than other observations. It can be seen, for example, in Panel C that the number of path surprise observations is 101 which means that there are 101 FOMC minutes announcement days.

Comparing the summary statistics of FOMC minutes (Panel C) to the summary statistics of FOMC statement (Panel D) and summary statistics of non-announcement days (Panel B), Table-1 indicates that the standard deviations of almost all variables of FOMC minutes are greater than the non-announcement days and smaller than FOMC statements. This is in parallel with our expectation given that FOMC statement is known as the king of all Fed announcements by financial market agents. Therefore, it can be said that this low volatility compare to FOMC statement announcement days and no policy changes with FOMC minutes are the main reasons for ruling out FOMC minutes as an important event for the financial markets. What is emphasised and investigated in this research is, in contrast, the effects of surprises coming from FOMC minutes on the financial markets by comparing non-announcement days. Therefore, these differences in between FOMC minutes announcement and non-announcement days may give an insight into level of volatility on the days of FOMC minutes announcements and why it should be considered.
Table 1. Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Obs</th>
<th>Mean</th>
<th>Std Dev.</th>
<th>Min</th>
<th>Max</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Whole Dataset & All Intervals for all days during 2014-2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUR/USD (%)</td>
<td>511,934</td>
<td>0</td>
<td>0.05</td>
<td>-1.4</td>
<td>1.5</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>S&P 500 (%)</td>
<td>213,888</td>
<td>0</td>
<td>0.17</td>
<td>-4.23</td>
<td>3.72</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>10-Year (bps)</td>
<td>559,738</td>
<td>0</td>
<td>0.04</td>
<td>-14.1</td>
<td>22</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>3-Month (bps)</td>
<td>136,106</td>
<td>0</td>
<td>0.83</td>
<td>-75</td>
<td>34</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>Target Surprise (bps)</td>
<td>3,227</td>
<td>-0.03</td>
<td>2.45</td>
<td>-52.00</td>
<td>24.50</td>
<td>-3.39</td>
<td>110.86</td>
</tr>
<tr>
<td>Path Surprise (bps)</td>
<td>3,227</td>
<td>-0.03</td>
<td>5.48</td>
<td>-42.51</td>
<td>51.50</td>
<td>0.78</td>
<td>15.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) Non-Announcement Days & for 13:00-16:00 Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUR/USD (%)</td>
<td>63,708</td>
<td>0</td>
<td>0.04</td>
<td>-0.79</td>
<td>0.58</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>S&P 500 (%)</td>
<td>98,371</td>
<td>0</td>
<td>0.14</td>
<td>-2.42</td>
<td>3.66</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>10-Year (bps)</td>
<td>89,019</td>
<td>0</td>
<td>0.04</td>
<td>-5.5</td>
<td>5.5</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>3-Month (bps)</td>
<td>41,974</td>
<td>0</td>
<td>0.71</td>
<td>-35</td>
<td>30</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>Target Surprise (bps)</td>
<td>3,013</td>
<td>-0.02</td>
<td>2.13</td>
<td>-35.00</td>
<td>24.50</td>
<td>-1.02</td>
<td>76.03</td>
</tr>
<tr>
<td>Path Surprise (bps)</td>
<td>3,013</td>
<td>0.04</td>
<td>5.41</td>
<td>-42.51</td>
<td>51.50</td>
<td>0.99</td>
<td>15.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C) Minutes-Announcement Days & for 13:00-16:00 Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUR/USD (%)</td>
<td>1,919</td>
<td>0</td>
<td>0.06</td>
<td>-0.56</td>
<td>0.4</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>S&P 500 (%)</td>
<td>1,938</td>
<td>0</td>
<td>0.15</td>
<td>-1.29</td>
<td>1.22</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>10-Year (bps)</td>
<td>1,930</td>
<td>0</td>
<td>0.05</td>
<td>-3.9</td>
<td>3.8</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>3-Month (bps)</td>
<td>1,917</td>
<td>0.01</td>
<td>0.48</td>
<td>-3</td>
<td>6.48</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>Target Surprise (bps)</td>
<td>101</td>
<td>0.06</td>
<td>3.12</td>
<td>-22.73</td>
<td>5.00</td>
<td>0.06</td>
<td>59.78</td>
</tr>
<tr>
<td>Path Surprise (bps)</td>
<td>101</td>
<td>-0.55</td>
<td>6.28</td>
<td>-22.96</td>
<td>33.79</td>
<td>2.38</td>
<td>19.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D) Statement-Announcement Days & for 13:00-16:00 Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUR/USD (%)</td>
<td>2,256</td>
<td>0</td>
<td>0.11</td>
<td>-1.08</td>
<td>0.76</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>S&P 500 (%)</td>
<td>3,529</td>
<td>0</td>
<td>0.23</td>
<td>-3.76</td>
<td>2.75</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>10-Year (bps)</td>
<td>3,278</td>
<td>0</td>
<td>0.1</td>
<td>-9.8</td>
<td>22.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3-Month (bps)</td>
<td>1,613</td>
<td>0.06</td>
<td>1.44</td>
<td>-10</td>
<td>27</td>
<td>1.44</td>
<td>1.44</td>
</tr>
<tr>
<td>Target Surprise (bps)</td>
<td>112</td>
<td>-0.33</td>
<td>6.56</td>
<td>-52.00</td>
<td>21.00</td>
<td>-3.94</td>
<td>33.50</td>
</tr>
<tr>
<td>Path Surprise (bps)</td>
<td>112</td>
<td>-1.24</td>
<td>8.52</td>
<td>-40.01</td>
<td>41.02</td>
<td>-0.26</td>
<td>12.00</td>
</tr>
</tbody>
</table>

Notes: Table reports the descriptive statistics for the variables used in the econometric analysis. The sample period of the whole dataset (Panel A) is December 2004–November 2017 and covers all ten-minute intervals in a day. Panel B, C, and D show the summary statistics of non-announcement days, FOMC minutes announcement days, and FOMC statement announcement days, respectively. Panel B, C, and D cover only the ten-minute interval during the period 13:00 - 16:00 to compare announcement effects. This period covers both FOMC announcements since minutes are released at 14:00 and statements are released at 14:15 and allow for comparison of volatility change one hour before and two hours after the announcements.
6.1 Measurement of Volatility

To gauge each asset’s volatility, the methodology of Kohn et al. (2003) and Rosa (2013) is followed and looks at whether, and to what extent, the volatility of asset prices is higher on FOMC minute release days compared with non-announcement days. More specifically, for both FOMC minute announcement and non-announcement days the standard deviation is defined as:

\[
SD = \sqrt{\frac{\sum_{t=1}^{T} (r_t - \bar{r})^2}{T - 1}}
\]

where \(r_t \) is the ten-minute return, \(T \) is the number of observations in each sample, and \(\bar{r} \) is the sample mean. Hence the normal is the volatility that would be expected to prevail on control or non-announcement days. The main hypothesis is that as long as the information set of FOMC minutes is not always completely predicted, and this must be reflected in higher volatility of asset prices compared with a period free of such events which is non-event days or to the normal ones.

6.2 Measurement of Reactions

The empirical methodology to measure the responses of the asset prices to FOMC minutes follows that used by Gürkaynak et al. (2005) and Hausman and Wongswan (2011) for FOMC statements. Again, asset price returns over a 20-minute window around FOMC minutes announcement in which 10 minutes before and 10 minutes after the release of FOMC minutes are examined. Specifically, for each asset class on the days in which FOMC minutes take place, regression is run:

\[
\Delta r_{x,d,\tau} = \alpha + \beta_1 T S_{d,\tau} + \beta_2 P S_{d,\tau} + \varepsilon_{x,d,\tau}
\]

where \(\Delta r_{x,d,\tau} \) is the return of each \(x \) asset class in the 20-minute window on the announcement day \(d \) at the announcement release time \(\tau \) (14:00). \(T S_{d,\tau} \) is the target surprise, \(P S_{d,\tau} \) is the path surprise and \(\varepsilon_{x,d,\tau} \) is the residual term. Therefore, as the intra-daily window is sufficiently narrow in time around the new information or surprise, it can be assumed that FOMC minutes are in no way affected by asset price movements or other macroeconomics news over that interval. For that reason, it is much less likely any other important news occurred within this narrow window that may have affected asset prices, hence increasing the precision power of equation-17 estimates.
7 Results and Discussions

7.1 Asset Prices Volatility

At first, asset price volatility is considered in a short window bracketing FOMC minutes announcement compared to non-announcement days. The fundamental idea is that as long as some part of FOMC minute announcement contain an unpredicted factor, financial agents reconsider to some extent their anticipations, and asset prices will be more volatile on FOMC minutes announcements days than it would be otherwise. Figure-2 presents the volatility of asset prices on FOMC minutes announcement dates and times. As explained above in the data section, returns are ten-minute percentage changes for the S&P 500 and exchange rates and ten-minute basis points yield changes for Treasury rates. The interval spans from one hour before (from at 13:00) to two hours after (to at 16:00) the event time (at 14:00). The vertical dashed-line is placed at the announcement time of FOMC minutes, which is at exactly 14:00. All four graphs plot (i) the standard deviation of ten-minute asset price returns around FOMC minutes announcements with a solid [green] line, and (ii) the standard deviation of ten-minute asset price returns on non-announcement days (control days) and hours with a dashed [orange] line.

Graphs in Figure-2 document that the release of FOMC minutes increases the volatility of each asset price. Volatility summits at the time of announcement, and stays higher than normal for approximately a 20-minute after the announcement then the impacts short-lived the volatility returns to the normal level. Another interesting result is that the volatility of all asset prices decreased, for instance the S&P 500 and 10-Year Treasury yield reaches the lowest point, in the period 13:50-14:00 period in all of the ten-minute periods leading up to FOMC minutes release. One potential interpretation of this is that market participants take a wait-and-see approach and avoid any transactions just before FOMC minute release. This is consistent with the idea that the financial markets tend to be relatively quiet on days or minutes preceding important news or a regularly scheduled announcement.

More specifically, the volatility of the 10-Year Treasury yields at 14:00, which is the time of the release, suddenly jumps from 4 bps to around 16 bps, which is roughly three times greater than on FOMC minutes announcement days compared with a period free of such an announcement, and stays significantly higher up to around 60-minutes after the release. Similarly, the volatility of the S&P 500 and EUR/USD exchange rate returns are approximately two and three times greater, respectively, on FOMC minutes announcement days compared to non-announcement days. In contrast, the
Figure 2. The Volatility of Asset Prices around FOMC Minutes Releases

Notes: This figure plots (i) the standard deviation of ten-minute asset price returns around FOMC minutes release on FOMC announcement days with a solid [green] line, and (ii) the standard deviation of ten-minute asset price returns on control days (non-announcement days) with a dashed [orange] line. Returns are ten-minute percentage changes for exchange rates and stock index while Treasury yields are based on basis point change. The sample period is December 2004–November 2017. The interval spans from one hour before (13:00) and two hours after (16:00) the event time (FOMC minutes are announced at 14:00 ET.). The vertical [blue] dashed line is placed at the release time of FOMC minutes which is 14:00 ET. The volatility of NASDAQ-100, DJIA, GBP/USD, and JPY/USD can be seen in Figure-6 in Appendix.
volatility of the three-months interest rate is insignificant and there is no considerable difference between announcement and non-announcement days as regards volatility of three-month Treasury yields. Overall the Euro–U.S. dollar exchange rate is the most affected financial asset class, closely followed by 10-Year Treasury yields and the S&P 500 stock prices, whereas 3-Month Treasury yield in announcement days acts similar to non-announcement days. In sum, Figure-2 proves that FOMC minutes release substantially increases the volatility of US asset prices and provides new information for the markets and this information is incorporated into asset prices in minutes.

This study also investigates whether the volatility of asset prices, attributed to the minutes FOMC, has altered over time by dividing the sample into two sub-groups. The question that this part simply asks is whether or not, with the zero lower bound policy the volatility of market at the time of releasing of FOMC minutes has changed. The first sub-group is taken from the before the ZLB period which is from December 2004 to December 2008. On December 16, 2008, the FOMC decreased its key federal fund target rate by 75 basis point from 100 to 25 basis point. Thereafter, the interest rate corridor became $0 - 0.25$ percent and this is known as zero lower bound (ZLB). This ZLB period took until December 2015. During this time the Fed did not change its key interest rate. In addition, there were almost no target policy surprises for the market participants during this seven-year period. As Swanson and Williams (2014) suggested that changing the current level of the policy rate is not the only option to make effective monetary policy. As one of important central bank communication tools, it is argued that the release of FOMC minutes could cause market volatility or at least might have a different volatility pattern before this period.

In this respect, Figure-3 and 4 plot (i) the standard deviation of ten-minute asset price returns around FOMC minutes release with a solid line, and (ii) the standard deviation of ten-minute asset price returns on non-announcement days (control days) and hours with a dashed line. Graphs on the left-hand side represent the volatility before the ZLB and graphs on the right-hand side represent the volatility during the ZLB period. The figures indicate that the overall level of volatility on the days of FOMC minutes announcement has increased and non-announcement days has remained during the zero lower bound period. For example, the volatility of 10-Year Treasury yields on the announcement days before the ZLB is about two times greater than the one on non-announcement days. However, with the ZLB period, this difference became five times greater.

There might be many different potential interpretations of this finding. First, the size of minutes content can play a role in this, since the size and the number of Fed communications have been increasing for last two decades. For example, the number of words in minutes for FOMC meeting which is held on May 3, 2005 is 4,080 while the minutes of FOMC meeting on January 25, 2012 has
Figure 3. Asset Price Volatility Before and During the ZLB Period

Notes: This figure plots (i) the standard deviation of ten-minute asset price returns around FOMC minutes release on FOMC announcement days with with a [green] solid line, and (ii) the standard deviation of ten-minute asset price returns on control days (non-announcement days) with a [orange] dashed line. Returns are ten-minute percentage changes for exchange rates and stock index. The first period (before the ZLB) covers from December 2004 to December 2008 while the ZLB period is December 2008–December 2015. The interval spans from one hour before (13:00) and two hours after (16:00) the event time (FOMC Minutes is announced at 14:00 ET.). The vertical [blue] dashed line is placed at the release time of FOMC minutes which is 14:00 ET. The volatility of NASDAQ-100, DJIA, GBP/USD, and JPY/USD can be seen at Figure-6 in Appendix.
Figure 4. Asset Price Volatility Before and During the ZLB Period

Notes: This figure plots (i) the standard deviation of ten-minute asset price returns around FOMC minutes release on FOMC announcement days with with a [green] solid line, and (ii) the standard deviation of ten-minute asset price returns on control days (non-announcement days) with a [orange] dashed line. Returns are ten-minute based on basis point change for Treasury yields. The first period (before the ZLB) covers from December 2004 to December 2008 while the ZLB period is December 2008–December 2015. The interval spans from one hour before (13:00) and two hours after (16:00) the event time (FOMC Minutes is announced at 14:00 ET.). The vertical [blue] dashed line is placed at the release time of FOMC minutes which is 14:00 ET. The volatility of NASDAQ-100, DJIA, GBP/USD, and JPY/USD can be seen at Figure-6 in Appendix.
10,651 words which is more than two times greater. Larger content might bring more information, thus, gives more surprise. Second, during the ZLB period surprises might not come from interest rate change reported through FOMC statement announcement but other concerns. For example, again FOMC statement for the meeting on January 25, 2012 has only 420 words and no surprise for the target rate policy. However, the minutes of this meeting has 10,651 words and much new information other than interest rate changes such as the Fed growth rate expectation, the size of quantitative easing, and the potential inflation rate in the near future. Information regarding these topics can be found in minutes. To sum up, even though there is no interest rate change during the ZLB period, the minutes of FOMC meetings are seen as a source of other economic information and all these new information might increase the volatility of the financial market.

The volatility of FOMC statement announcement days was also controlled. To gauge the order of magnitude of effects of FOMC statements, FOMC minutes and non-announcement days, a comparison of the volatility of stock market and exchange rates attributed to FOMC minutes was made with that induced by the release of FOMC statement and non-announcement days. Figure-5 represents these comparisons. The dotted [blue] line denotes the volatility of the release of FOMC statement and FOMC minutes and non-announcement days are the same as before, which are represented by the solid line and dashed line, respectively. According to Figure FOMC statements indicate the most greatest volatility in asset price. For example, S&P 500 stock prices are at least four times more volatile on FOMC statement announcement days compared with non-announcement days when they are two times higher than FOMC minute announcement days.
Figure 5. FOMC Statement vs FOMC Minutes (Conventional and ZLB Period)

Notes: This figure plots (i) the standard deviation of ten-minute asset price returns around FOMC minutes release on FOMC announcement days with a [green] solid line, (ii) the standard deviation of ten-minute asset price returns on control days (non-announcement days) with a [orange] dashed line, and (iii) the standard deviation of ten-minute asset price returns around FOMC statement release on FOMC announcement days with a [blue] dotted line. Returns are ten-minute based on basis point change for Treasury yields. The first period (before the ZLB) covers from December 2004 to December 2008 while the ZLB period is December 2008–December 2015. The interval spans from one hour before (13:00) and two hours after (16:00) the event time (FOMC Minutes and Statement are announced at 14:00 and 14:15 ET respectively). The vertical [blue] dashed line is placed at the release time of FOMC minutes which is 14:00 ET.
7.2 Reactions to FOMC Minutes

The literature mostly concentrate on the financial market’s responses only to FOMC statements. However, surprises which comes from FOMC minutes have similar features to FOMC statements. Therefore, these surprises might have some meaningful impact on asset prices. In this research, I seek to answer the question: if FOMC minutes have meaningful impact on the volatility of financial markets, how do these volatilities affect the financial markets? To show this, equation-17 is regressed for all asset classes on FOMC minutes instead of FOMC statements in daily and intradaily data.

Table-2 shows the financial market responses to the monetary policy surprises coming from FOMC minutes rather than FOMC statements. According to Table-2, when considering the whole period (Panel A), except 3-Month interest rates, all assets react significantly to FOMC minutes. On average, a hypothetical 100-basis point surprise upward revisions in the future path of monetary policy is associated with a 17 basis point surprise rise in 10-Year Treasury rate, 1.18% appreciation of the US Dollar against the Euro, and almost 1% decrease in the S&P500 stock index. These findings are consistent with the expectation that if FOMC minutes contain some new information, this is mostly related to the long-term monetary policy actions, given that FOMC minutes are published three weeks after FOMC statement announcement and all information contained in FOMC minutes comes from previous actions. Consequently, financial participants would revise their future expectation rather than the next FOMC interest rate change. Therefore, the results are in parallel with the expectation that FOMC minutes have an impact on financial markets through long-term monetary policy surprises, which is the path surprise in our case. Similarly, a hypothetical 100-basis point surprise cut in the fed funds target rate is associated with a 1.77% decrease in the S&P500 stock index, 1.22% US dollar appreciation against the Euro, 16 and 9 basis point increase in the 10-Year and 3-Month Treasury yields. However, only the S&P500 stock index responds significantly to the target surprise.

In addition Rosa (2013), our findings indicate that the release of FOMC minutes not only causes the volatility in financial markets but also financial market participants respond significantly to FOMC minutes release. This result also contrasts the claims of Jubinski and Tomljanovich (2013) that individual firms’ equity returns are essentially unaffected by FOMC minutes releases. The differences between our and Jubinski and Tomljanovich (2013)’s finding might come from the sample size and type. Jubinski and Tomljanovich (2013) analysed only individual firms’ reactions for a two year period, however, our data is more comprehensive and investigates three (stock market, exchange rate, and fixed income market) different main markets’ reaction rather than individual...
firms over an almost 13 years perspective.

Table 2. The Responses of the Financial Markets to FOMC Minutes

<table>
<thead>
<tr>
<th></th>
<th>Target SE</th>
<th>Path SE</th>
<th>Cons SE</th>
<th>Obs</th>
<th>R-Sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P500 (%)</td>
<td>-1.77**</td>
<td>(0.81)</td>
<td>-0.94*** (0.22)</td>
<td>-0.01 (0.03)</td>
<td>101 0.16</td>
</tr>
<tr>
<td>EUR (%)</td>
<td>1.22</td>
<td>(0.88)</td>
<td>1.18*** (0.36)</td>
<td>-0.04** (0.02)</td>
<td>101 0.13</td>
</tr>
<tr>
<td>10-Year (bps)</td>
<td>16.55</td>
<td>(20.74)</td>
<td>17.79*** (4.23)</td>
<td>0.84 (0.54)</td>
<td>101 0.16</td>
</tr>
<tr>
<td>3-Month (bps)</td>
<td>9.81</td>
<td>(8.39)</td>
<td>5.62</td>
<td>(3.26)</td>
<td>0.29 (0.27)</td>
</tr>
</tbody>
</table>

(B) Statement Response for the Whole Period (2004-2017)

<table>
<thead>
<tr>
<th></th>
<th>Target SE</th>
<th>Path SE</th>
<th>Cons SE</th>
<th>Obs</th>
<th>R-Sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P500 (%)</td>
<td>-5.83***</td>
<td>(1.01)</td>
<td>-2.27* (1.14)</td>
<td>0.11 (0.08)</td>
<td>112 0.25</td>
</tr>
<tr>
<td>EUR (%)</td>
<td>1.07</td>
<td>(0.82)</td>
<td>2.97*** (0.61)</td>
<td>-0.02 (0.03)</td>
<td>112 0.26</td>
</tr>
<tr>
<td>10-Year (bps)</td>
<td>15.29</td>
<td>(34.58)</td>
<td>38.92</td>
<td>(20.42)</td>
<td>0.26 (0.56)</td>
</tr>
<tr>
<td>3-Month (bps)</td>
<td>67.03***</td>
<td>(8.51)</td>
<td>4.86</td>
<td>(7.86)</td>
<td>-0.09 (0.96)</td>
</tr>
</tbody>
</table>

(C) Monetary Policy Surprises for before ZLB (2004-2008)

<table>
<thead>
<tr>
<th></th>
<th>Target SE</th>
<th>Path SE</th>
<th>Cons SE</th>
<th>Obs</th>
<th>R-Sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P500 (%)</td>
<td>-1.51</td>
<td>(0.90)</td>
<td>-0.95*** (0.27)</td>
<td>-0.04 (0.04)</td>
<td>45 0.22</td>
</tr>
<tr>
<td>EUR (%)</td>
<td>0.75</td>
<td>(0.80)</td>
<td>0.78** (0.34)</td>
<td>-0.05* (0.02)</td>
<td>45 0.11</td>
</tr>
<tr>
<td>10-Year (bps)</td>
<td>28.46</td>
<td>(21.48)</td>
<td>12.87** (4.89)</td>
<td>0.10 (0.81)</td>
<td>45 0.18</td>
</tr>
<tr>
<td>3-Month (bps)</td>
<td>13.05</td>
<td>(12.64)</td>
<td>8.09</td>
<td>(4.85)</td>
<td>0.39 (0.57)</td>
</tr>
</tbody>
</table>

(D) Monetary Policy Surprises for during ZLB (2008-2015)

<table>
<thead>
<tr>
<th></th>
<th>Target SE</th>
<th>Path SE</th>
<th>Cons SE</th>
<th>Obs</th>
<th>R-Sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P500 (%)</td>
<td>-8.04**</td>
<td>(3.88)</td>
<td>-0.61</td>
<td>(0.41)</td>
<td>0.02 (0.04)</td>
</tr>
<tr>
<td>EUR (%)</td>
<td>1.12</td>
<td>(3.39)</td>
<td>2.53*** (0.80)</td>
<td>-0.02 (0.03)</td>
<td>56 0.16</td>
</tr>
<tr>
<td>10-Year (bps)</td>
<td>25.82</td>
<td>(79.93)</td>
<td>31.33*** (8.52)</td>
<td>1.76** (0.73)</td>
<td>56 0.23</td>
</tr>
<tr>
<td>3-Month (bps)</td>
<td>29.62</td>
<td>(18.82)</td>
<td>-1.16</td>
<td>(2.01)</td>
<td>0.11 (0.17)</td>
</tr>
</tbody>
</table>

Notes: Table shows responses of asset prices to the surprise of FOMC minutes. The sample period includes FOMC minutes from December 2004 to November 2017 which is total 101 FOMC minutes announcements. Interest rates are in the bps unit, and S&P 500 and exchange rates are in percentage change. Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
7.3 Effects of Zero Lower Bound

In the wake of the recent financial crisis, the Fed has relied on unconventional policy tools such as large-scale asset purchases and took an unexpected decision to decrease short-term interest rates to the zero lower bound. Previous efforts (Neely (2015), Bauer and Neely (2014), Wright (2012), Swanson and Williams (2014), Krishnamurthy and Vissing-Jorgensen (2011), Gagnon et al. (2011), and d’Amico et al. (2012)) investigated the effects of these unconventional monetary policies. However, these papers mainly focused either solely on FOMC statement or quantitative easing announcements based on FOMC statement. In contrast, the goal of this section is to assess the effects of the release of FOMC minutes on financial market by comparing the zero lower bound period (2008-2015) with the conventional period (2004-2008).

In doing so, the equation-17 is regressed on two different periods which are before the ZLB period (2004-2008) and during the ZLB period (2008-2015). These results are presented in Panel B and C in Table-2. According to Panel C which is for the ZLB period, the responses of the stock market, exchange rate and ten-year yield to FOMC minutes increased. For instance, the response of the Euro-US Dollar exchange rate and 10-years bonds to the path surprise increased about three-fold. This is consistent with the argument (Rajan (2015)) that after the recent financial crisis the US dollar has become more influential in the financial world. With the quantitative easing policy the Fed increased its balance sheet fourfold and the value of US dollar depreciated against the international currency basket. This means that international capital flowing from the US to the rest of the world increased and the world’s financial market have heavily relied on the US dollar. Therefore, these results support that any new information related to the value of USD affects the exchange rate market even if this information set is three weeks lagged. Similarly, the responses of stock market and 3-Month interest rate five-fold and two-fold, respectively.

These differences between advanced and non-advanced countries are tested for statistical significance with a Chow test and the results can be seen in the appendix. The hypothesis that there is no structural break is rejected for stock markets, 10-year, and 3-month interest rates and not rejected for the exchange rate.

8 Conclusion

This research, at first, has examined the extent to which FOMC minutes has some surprise information for financial market participants during the period from December 2004 to November 2017, by considering 101 FOMC minutes announcements. This investigation is an important topic for
several reasons. From a policy maker’s perspective, this line of investigation sheds further light on the effect of monetary policy communication on the markets. Two different components of monetary policy surprise were constructed; namely, the target and path surprise with high-frequency data. Thereafter, using the event study method with intra-daily it was found that FOMC minutes have new and relevant information for the financial markets.

In summary, I investigate the financial market effects of FOMC minutes on stock markets, fixed income markets and exchange rates prices and compares conventional and unconventional (the zero lower bound) periods using an intra-daily event-study method. The main findings of this research can be summarised as follows. First, the release of FOMC minutes significantly affects the market volatility. Second, the stock market, exchange rate, and fixed income assets significantly respond to FOMC minutes of announcements. Finally, further investigation into the role of zero lower bound on the volatility and reactions of markets to FOMC minutes concludes that volatility and reactions increased during this period.
Appendix

A Derivation of the Target Surprise

\[f_{d,t} = \mathbb{E}[r_{t+m}] + \eta_{d,t} \]
\[(18) \]

\[ff_{d_0-1,t} = \frac{d_0}{D_0} r_0 + \frac{D_0 - d_0}{D_0} \mathbb{E}_{d_0-1,t}(r_1) + \eta_{d_0-1,t} \]
\[(19) \]

where \(ff_{d_0-1,t} \) is the closing-contract price on one-day before \((d_0 - 1) \) FOMC announcement day \((d_0) \) in month \(t \). By evaluating the equations-19 one-day ahead which is at the end of day \(d_0 \), we can reach:

\[ff_{d_0,t} = \frac{d_0}{D_0} r_0 + \frac{D_0 - d_0}{D_0} (r_1) + \eta_{d_0,t} \]
\[(20) \]

where \(ff_{d_0,t} \) is the contract price at the end of FOMC announcement day in month \(t \). Note that in both equations- 19 and 20, \(m \) is zero and so \(ff_{d_0,t} \) equals \(ff_{d_0} \), but for the simplicity we do not prefer to denote.

Differencing the equation-20 from the 19:

\[ff_{d_0-1,t} - ff_{d_0,t} = \left(\frac{d_0}{D_0} r_0 - \frac{d_0}{D_0} r_0 \right) + \frac{D_0 - d_0}{D_0} \left(\mathbb{E}_{d_0-1,t}(r_1) - (r_1) \right) + \left(\eta_{d_0-1,t} - \eta_{d_0,t} \right) \]
\[(21) \]

\[\Delta ff_{d_0,t} = \frac{D_0 - d_0}{D_0} \left(\mathbb{E}_{d_0-1,t}(r_1) - (r_1) \right) + \Delta \eta_{d_0,t} \]
\[(22) \]

where \(\Delta ff_{d_0,t} \equiv ff_{d_0,t} - ff_{d_0-1,t} \) and \(\Delta \eta_{d_0,t} \equiv \eta_{d_0,t} - \eta_{d_0-1,t} \)

\[\left(\mathbb{E}_{d_0-1,t}(r_1) - (r_1) \right) = \left(\Delta ff_{d_0,t} - \Delta \eta_{d_0,t} \right) \frac{D_0}{D_0 - d_0} \]
\[(23) \]

where \(\Delta \eta_{d_0,t} \equiv 0 \) and the target surprise is

\[TS_{d_0,t} = \mathbb{E}_{d_0-1,t}(r_1) - (r_1) \]
\[(24) \]
simply:

\[TS_{d_0,t} = \frac{D_0}{D_0 - d_0} \Delta ff_{d_0,t} \] (25)

where \(\frac{D_0}{D_0 - d_0} \) is the scaling factor and \(TS_{d_0,t} \) is the target surprise. Kuttner (2001) and Gürkaynak (2005) are followed in scaling for the concurrent month, \(\Delta ff_{d_0,t} \) up by the ratio of the number of days in the month, \(D_0 \), over the number of days remaining after the meeting, \(D_0 - d_0 \). One problem might arise with this scaled measure in case of FOMC meetings that occur very late in the month. For example in the last seven days of the month, the scaling factor becomes very large at the end of the month for example, if FOMC meeting takes place on December 30 then the scaling factor becomes 31 (\(D_0 = 31 \), \(d_0 = 30 \)).

Thus, following Kuttner (2001) and Gürkaynak (2005) the unscaled change is used in the next-month fed funds futures contract to avoid multiplying by a very large scale factor in equation-10. In that case, \(TS_{d_0,t} = \Delta ff_{d_0,t}^1 = ff_{d_0,t}^1 - ff_{d_0-1,t}^1 \). Thus, no scaling is involved since the policy action affects the expected rates in the entire subsequent month contract.

B Derivation of the Path Surprise

Let \(ff \) denotes the futures contract rate for the month containing the second FOMC announcement. Then

\[ff_{d_0-1,t} = \frac{d_1}{D_1} \mathbb{E}_{d_0-1,t}[r_1] + \frac{D_1 - d_1}{D_1} \mathbb{E}_{d_0-1,t}[r_2] + \eta_{d_0-1,t} \] (26)

where \(d_1 \) and \(D_1 \) are the day of that second FOMC announcement and the number of days in the month containing this second FOMC meeting. Similarly, \(\eta_{d_0-1,t} \) reflects the risk premium as same as before. \(r_1 \) is the interest rate after the first FOMC meeting and \(r_2 \) is the interest rate after the second FOMC meeting. By evaluating the above equations ahead one day:

\[ff_{d_0,t} = \frac{d_1}{D_1} [r_1] + \frac{D_1 - d_1}{D_1} \mathbb{E}_{d_0,t}[r_2] + \eta_{d_0,t} \] (27)

Differencing the equation-26 from the 27:

\[\Delta ff_{d_0,t} = \frac{d_1}{D_0} \left(\mathbb{E}_{d_0-1,t}(r_1) - (r_1) \right) + \frac{D_1 - d_1}{D_1} \left(\mathbb{E}_{d_0-1,t}(r_2) - \mathbb{E}_{d_0,t}(r_2) \right) \] (28)

again same as equation-23 ; \(\Delta ff_{d_0,t} \equiv ff_{d_0,t} - ff_{d_0-1,t} \) and \(\Delta \eta_{d_0,t} \equiv 0 \) and we have seen on
equation-24 that \(TS_{d_0,t} = \mathbb{E}_{d_0-1,t}(r_1) - (r_1) \) and similarly the path surprise is

\[
PS_{d_0,t} = \mathbb{E}_{d_0-1,t}(r_2) - \mathbb{E}_{d_0,t}(r_2)
\]

(29)

then we put \(TS_{d_0,t} \) and \(PS_{d_0,t} \) into equation-29

\[
\Delta f f_{d_0,t} = \frac{d_1}{D_0} TS_{d_0,t} + \frac{D_1 - d_1}{D_1} PS_{d_0,t}
\]

(30)

then we can reach the path surprise;

\[
PS_{d_0,t} = \left(\Delta f f_{d_0,t} - \frac{d_1}{D_1} TS_{d_0,t} \right) \frac{D_1}{D_1 - d_1}
\]

(31)

On the other hand, one can argue that a change in near-term (one-year) interest rates may be due to a surprise change in the target rate so Path surprise can also contain the effect of target surprise which violates our argument. Even though this argument is not persuasive since target surprise is proxied by one-month future contract while path surprise by one year Eurodollar which is entirely different maturity. However, to deal with this argument, we used two measures of the path surprise. Path Surprise I is the change in one-year-ahead Eurodollar interest rate futures in a one-day or 40 minutes window around the Fed events. To remove the effect of the target rate surprise from the change in the near-term interest rate, following Hausman and Wongswan (2011) and Gürkaynak et al. (2005) we defined Path Surprise II as the component of the change in one-year-ahead Eurodollar interest rate futures that is uncorrelated with the target surprise. In other words, we orthogonalised path surprises with respect to the target surprises to isolate the separate effects of target and long-term path surprises.

Thus, path surprise II represents news that financial agents have learned only from FOMC announcement about the predicted future path of policy which is over and above what they have learned about the level of the target rate (Hausman and Wongswan, 2011). To derive path surprise II, following Hausman and Wongswan (2011) and Gürkaynak et al. (2005) it is run a regression of path surprise I on a constant and the target surprise. The innovation from this regression is Path Surprise II:

\[
Path \text{Surprise } I_d = w_0 + w_1 \ast TS_d + PS_{d}^{II}
\]

(32)

where \(PS_{d}^{II} \) (path surprise II) is the error term and uncorrelated with the target surprise. \(Path \text{Surprise } I_d = - .551 + .679 \ast TS_d + PS_{d}^{II} \) adjusted R-sq. is 0.23.
C Volatility of Other Assets

Figure 6 is to indicate how the volatility of other assets move in addition to our main four assets. NASDAQ 100 and DJIA for stock market and GBP/USD and JPY/USD for exchange rate. They are very similar and for the sake of simplicity I dropped this from the main text.
Figure 6. The Volatility of Asset Prices around FOMC Minutes Releases

<table>
<thead>
<tr>
<th>Time</th>
<th>NASDAQ-100 (%)</th>
<th>DJIA (%)</th>
<th>GBP/USD (%)</th>
<th>JPY/USD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:00</td>
<td>0.06</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>13:30</td>
<td>0.08</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>14:00</td>
<td>0.12</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>14:30</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>15:00</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>15:30</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>16:00</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Notes: This figure plots (i) the standard deviation of ten-minute asset price returns around FOMC minutes release on FOMC announcement days with a [green] solid line, and (ii) the standard deviation of ten-minute asset price returns on control days (non-announcement days) with a [orange] dashed line. Returns are ten-minute percentage changes for exchange rates and stock index. The first period (before the ZLB) covers from December 2004 to December 2008 while the ZLB period is December 2008–December 2015. The interval spans from one hour before (13:00) and two hours after (16:00) the event time (FOMC Minutes is announced at 14:00 ET.). The vertical [blue] dashed line is placed at the release time of FOMC minutes which is 14:00 ET.
References

Ehrmann, M., M. Fratzscher, and R. Rigobon. 2011. Stocks, Bonds, Money Markets and exchange...

37

Swanson, E. T. 2006. Have Increases in Federal Reserve Transparency Improved Private Sector Interest Rate Forecasts? *Journal of Money, Credit and Banking* pp. 791–819. 7

